Probing helix formation in unsolvated peptides.

نویسندگان

  • Gary A Breaux
  • Martin F Jarrold
چکیده

Ion mobility measurements have been used to examine helix formation in unsolvated glycine-based peptides containing three alanine residues. Nine sequence isomers of Ac-[12G3A]K+H(+) were studied (Ac = acetyl, G = glycine, A = alanine, and K = lysine). The amount of helix present for each peptide was examined using two metrics, and it is strongly dependent on the proximity and the location of the alanine residues. Peptides with three adjacent alanines have the highest helix abundances, and those with well-separated alanines have the lowest. The helix abundances for most of the peptides can be fit reasonably well using a modified Lifson-Roig theory. However, Lifson-Roig theory fails to account for several key features of the experimental results. The most likely explanation for the correlation between helix abundances and the number of adjacent alanines is that neighboring alanines promote helix nucleation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Helices and Sheets in vacuow

The structures and properties of unsolvated peptides large enough to possess secondary structure have been examined by experiments and simulations. Some of the factors that stabilize unsolvated helices and sheets have been identified. The charge, in particular, plays a critical role in stabilizing a-helices and destabilizing b-sheets. Some helices are much more stable in vacuum than in aqueous ...

متن کامل

Helix formation in unsolvated peptides: side chain entropy is not the determining factor.

Understanding the factors that stabilize R-helices is critical to understanding protein folding.1 Structure and sequence information for naturally occurring proteins has revealed a preference for certain amino acids in R-helices.2 Thus, many studies have focused on the individual effects of the amino acids on R-helix stability,3,4 and algorithms have been developed that can predict helix conten...

متن کامل

The energy landscape of unsolvated peptides: helix formation and cold denaturation in Ac-A4G7A4 + H+.

Ion mobility measurements and molecular dynamics simulations were performed for unsolvated A4G7A4 + H+ and Ac-A4G7A4 + H+ (Ac = acetyl, A = alanine, G = glycine) peptides. As expected, A4G7A4 + H+ adopts a globular conformation (a compact, random-looking, three-dimensional structure) over the entire temperature range examined (100-410 K). Ac-A4G7A4 + H+ on the other hand is designed to have a f...

متن کامل

Direct probing of zwitterion formation in unsolvated peptides.

Molecular beam electric deflection measurements have been used to determine electric susceptibilities for small unsolvated alanine-based peptides. The electric susceptibility provides information about the charge distribution within the peptide and can be used to distinguish between zwitterionic and canonical forms. Measured electric susceptibilities for WAn peptides (n = 1-5) are similar to th...

متن کامل

Helix Formation in Unsolvated Alanine-Based Peptides: Helical Monomers and Helical Dimers

High-resolution ion mobility measurements and molecular dynamics simulations have been used to examine helix formation in protonated alanine-based peptides in a solvent-free environment. Protonated polyalanines, AlanH, with up to 20 residues do not form extended helices in a vacuum. However, experiment and theory indicate that the addition of a lysine to the C terminus (Ac-Alan-LysH) results in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 125 35  شماره 

صفحات  -

تاریخ انتشار 2003